Search results for "Proton spin crisis"
showing 10 items of 13 documents
Proton spin and the cheshire cat principle
1991
Abstract We discuss the proton matrix element of the flavor-singlet axial current (FSAC), often referred to as proton spin, in terms of the chiral bag model with due account of the axial anomaly and quantum number fractionation. We conclude that the contribution due to gluons is significant for large bag radii and that it is crucial in order to establish the Cheshire cat principle.
Medium effects in DIS from polarized nuclear targets
2014
The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in medium nucleon, related to the low energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment.
The gluon spin in the chiral bag model
2000
We study the gluon polarization contribution at the quark model renormalization scale to the proton spin, $\Gamma$, in the chiral bag model. It is evaluated by taking the expectation value of the forward matrix element of a local gluon operator in the axial gauge $A^+=0$. It is shown that the confining boundary condition for the color electric field plays an important role. When a solution satisfying the boundary condition for the color electric field, which is not the conventionally used but which we favor, is used, the $\Gamma$ has a positive value for {\it all} bag radii and its magnitude is comparable to the quark spin polarization. This results in a significant reduction in the relativ…
Measurement Of The Proton Spin Polarisabilities
2013
Proton spin polarizabilities from polarized Compton scattering
2007
Polarized Compton scattering off the proton is studied within the framework of subtracted dispersion relations for photon energies up to 300 MeV. As a guideline for forthcoming experiments, we focus the attention on the role of the proton's spin polarizabilities and investigate the most favorable conditions to extract them with a minimum of model dependence. We conclude that a complete separation of the four spin polarizabilities is possible, at photon energies between threshold and the $\Delta(1232)$ region, provided one can achieve polarization measurements with an accuracy of a few percent.
Gluonic effects in vector meson photoproduction at large momentum transfers
2001
Non-perturbative QCD mechanisms are of fundamental importance in strong interaction physics. In particular, the flavor singlet axial anomaly leads to a gluonic pole mechanism which has been shown to explain the $\eta^{\prime}$ mass, violations of the OZI rule and more recently the proton spin. We show here that the interaction derived from the gluonic pole exchange explains the high momentum transfer behavior of the photoproduction cross sections of vector mesons at JLab energies.
Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system
2021
The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins co…
The Proton Spin in the Chiral Bag Model : Casimir Contribution and Cheshire Cat Principle
1998
The flavor singlet axial charge has been a source of study in the last years due to its relation to the so called {\it Proton Spin Problem}. The relevant flavor singlet axial current is anomalous, i.e., its divergence contains a piece which is the celebrated $U_A(1)$ anomaly. This anomaly is intimately associated with the $\eta^\prime$ meson, which gets its mass from it. When the gauge degrees of freedom of QCD are confined within a volume as is presently understood, the $U_A(1)$ anomaly is known to induce color anomaly leading to "leakage" of the color out of the confined volume (or bag). For consistency of the theory, this anomaly should be canceled by a boundary term. This ``color bounda…
Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p+p collisions at s=510 GeV
2020
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of…
Quarks in nuclei
1992
We review some properties of Quantum Chromodynamics, the theory of the hadronic interactions, which serve as guidelines to introduce low energy models of hadron structure. Among these we shall center our attention in the non relativistic quark model and the topological bag model. We present some of their applications to actual problems in experimental and theoretical nuclear physics. In particular we discuss exotic nuclei, quark matter, deep inelastic scattering, proton spin,... and their relation to such phenomena as quark Pauli blocking, strangeness enhancement, nuclear structure functions, bosonization,...